Add Taq Master (2x Conc.)

Research Use Only

Product Code

35001

Component

1. Add Taq Master (2x conc.) 1.0 ml

Storage Condition

Store at -20°C

Description

Add Taq Master is supplied as a 2x concentrated master mixture type containing all the reagents needed to perform PCR.

Add Taq DNA polymerase catalyzes the $5'\rightarrow 3'$ synthesis of DNA but has no detectable $3'\rightarrow 5'$ proofreading exonuclease activity, and possesses low $5'\rightarrow 3'$ exonuclease activity, which results in a 3'-dA overhang on the PCR product.

Components of Add Taq Master as 2x conc.

20mM Tris-HCl (pH8.8), 100mM KCl, 0.2% Triton® X-100, 4mM MgCl $_2$. Protein stabilizer, sediment, loading dye and 0.5mM each of dATP, dCTP, dGTP, and dTTP

Storage and Stability

Add Taq Master (2x conc.) is stable for 2 years when stored in a constant temperature freezer at less than -20°C.

Nucleic Acid Amplification Protocol

1. Add the following components to a thin-walled PCR tube:

Nuclease-Free Water	x μl
Add Taq Master (2x conc.)	10 μΙ
Forward primer (10 µM)	0.25~2.0 μl
Reverse primer (10 μM)	0.25~2.0 μl
DNA template	х μΙ
Total reaction volume	20μΙ

^{*} Recommendation for template DNA concentration in a 20 µl reaction volume

2. PCR cycling

Initial Denaturation	95℃, 5 min
PCR Cycling (25 – 40 cycles)	95°C, 15 − 30 sec
	55 - 65℃, 15 – 30sec
	72°C, 30 sec per kb of product length
Final Extension	72℃, 5 min
Hold	12℃, ∞

¹⁾ Human genomic DNA: 0.1 ng \sim 1 μ g

²⁾ Bacterial genomic DNA: 0.1 ng ~ 100 ng

³⁾ Plasmid DNA: 0.01 ng \sim 5 ng