Add Taq DNA Polymerase

Product Code

17001X

Component

1. Add Taq DNA Polymerase ($5.0 \mathrm{U} / \mu \mathrm{l}$) 1,000 units, $200 \mu \mathrm{l}$
2. 10x Reaction Buffer (without Mg) $1.0 \mathrm{ml} \times 2$ tubes
3. $25 \mathrm{mM} \mathrm{MgCl} 21.0 \mathrm{ml} \times 2$ tubes

Storage Condition

Store at $-20^{\circ} \mathrm{C}$

Description

Add Taq DNA Polymerase is a highly thermostable recombinant DNA polymerase derived from the thermophile, Thermus aquaticus.
The molecular weight of the recombinant protein is 94 kD . Add Taq DNA polymerase catalyzes the $5^{\prime} \rightarrow 3^{\prime}$ synthesis of DNA but has no detectable $3^{\prime} \rightarrow 5^{\prime}$ proofreading exonuclease activity, and possesses low $5^{\prime} \rightarrow 3^{\prime}$ exonuclease activity, which results in a $3^{\prime}-\mathrm{dA}$ overhang on the PCR product.

Storage Buffer

20 mM Tris-HCl (pH 8.0), $100 \mathrm{mM} \mathrm{KCl}, 3 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, 0.1% Nonidet P-40, 0.1% Tween ${ }^{\circledR} 20$ and 50\% (v/v) glycerol

10X Reaction Buffer

100 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.8), 500 \mathrm{mM} \mathrm{KCl}, 1 \%$ Triton® $\mathrm{X}-100$ and $20 \mathrm{mM} \mathrm{MgCl}{ }_{2}$

Storage and Stability

Add Taq DNA Polymerase is stable for 2 years when stored in a constant temperature freezer at less than $-20^{\circ} \mathrm{C}$.

Nucleic Acid Amplification Protocol

1. Add the following components to a thin-walled PCR tube:	
Nuclease-Free Water	$\mathrm{x} \mu \mathrm{l}$
10x Reaction Buffer	$2 \mu \mathrm{l}$
10 mM dNTP Mixture	$2 \mu \mathrm{l}$
Forward primer (10 $\mu \mathrm{M})$	$0.25 \sim 2 \mu \mathrm{l}$
Reverse primer (10 $\mu \mathrm{M})$	$0.25 \sim 2 \mu \mathrm{l}$
DNA template	$\mathrm{x} \mu \mathrm{l}$
Add Taq DNA Polymerase (5 U/ LI$)$	$0.2 \mu \mathrm{l}$
Total reaction volume	$20 \mu \mathrm{l}$

* Recommendation for template DNA concentration in a $20 \mu \mathrm{l}$ reaction volume

1) Human genomic DNA: $0.1 \mathrm{ng} \sim 1 \mu \mathrm{~g}$
2) Bacterial genomic DNA: $0.1 \mathrm{ng} \sim 100 \mathrm{ng}$
3) Plasmid DNA: 0.01 ng ~ 5 ng
2. PCR cycling

Initial denaturation	$95^{\circ} \mathrm{C}, 5 \mathrm{~min}$
PCR cycling $95-40$ cycles $)$	$95^{\circ} \mathrm{C}, 15-30 \mathrm{sec}$
	$55-65^{\circ} \mathrm{C}, 15-30 \mathrm{sec}$
	$72^{\circ} \mathrm{C}, 30 \mathrm{sec}$ per kb of product length
Hold	$72^{\circ} \mathrm{C}, 5 \mathrm{~min}$

